The net displacement at a point on the string where the pulses cross is 0.2 m.
The term "displacement" refers to a shift in an object's position. It has a magnitude and a direction, making it a vector quantity. An arrow pointing from the starting point to the finishing point serves as its symbol.
A string that is connected to a post at one end is used to transmit a sequence of pulses, each measuring 0.1 meters in amplitude.
At the post, the pulses are reflected and return along the string without losing any of their amplitude.
Now, let's say the ends are free.
There is no inversion on reflection if the end is free. The amplitude at their intersection is 2A.
Now, since A = 0.1 m
Then, 2A = 2(0.1) = 0.2 m
As a result, the net displacement at the string's intersection of two pulses is 0.2 m.
The correct option is (c).
Learn more about amplitude here:
brainly.com/question/3613222
#SPJ4
Answer:
0.34 sec
Explanation:
Low point of spring ( length of stretched spring ) = 5.8 cm
midpoint of spring = 5.8 / 2 = 2.9 cm
Determine the oscillation period
at equilibrum condition
Kx = Mg
g= 9.8 m/s^2
x = 2.9 * 10^-2 m
k / m = 9.8 / ( 2.9 * 10^-2 ) = 337.93
note : w =
=
= 18.38 rad/sec
Period of oscillation = 
= 0.34 sec
Answer:
yes it doesn't matter
Explanation:
it doesn't matter because troughs and crests are the same and either can be used
Answer:
43.7 °C
Explanation:
= Coefficient of linear expansion of brass = 
= Coefficient of linear expansion of steel = 
= Initial length of brass = 31 cm
= Initial length of steel = 11 m
= Total change in length = 3 mm
Total change in length would be


The final temperature is 43.7 °C
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:

since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:

And the raising speed <em>v </em>of the water is given by:

where <em>q</em> is the water flow (1 cubic foot per minute).