Answer : a. Community
Allows a system to be accessible by a group of organizations. It can be shared between several organizations. It may be managed by organizations or by the third party.
This should be chosen by Ryan, since this computing model is cost effective and best to share among companies and organizations.
Other options explained:
-Software model is accessible via a browser and multiple users can use it.
-Infrastructure model is based on providing services of computer architecture in a virtual environment
Answer:
As given in the problem statement
frequency=1 KHz=1*10^3 Hz
V(t) is represented as
v(t) = 5sin(2 \pi 1000t) + 0.05sin(2 \pi 3000t)
v ( t ) = 5 s i n ( 2 π 1000 t ) + 0.05 s i n ( 2 π 3000 t )
Total harmonic distortion will be 234 Pi
Answer:
a) V_f = 25.514 m/s
b) Q =53.46 degrees CCW from + x-axis
Explanation:
Given:
- Initial speed V_i = 20.5 j m/s
- Acceleration a = 0.31 i m/s^2
- Time duration for acceleration t = 49.0 s
Find:
(a) What is the magnitude of the satellite's velocity when the thruster turns off?
(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.
Solution:
- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:
V_f = V_i + a*t
V_f = 20.5 j + 0.31 i *49
V_f = 20.5 j + 15.19 i
- The magnitude of the velocity vector is given by:
V_f = sqrt ( 20.5^2 + 15.19^2)
V_f = sqrt(650.9861)
V_f = 25.514 m/s
- The direction of the velocity vector can be computed by using x and y components of velocity found above:
tan(Q) = (V_y / V_x)
Q = arctan (20.5 / 15.19)
Q =53.46 degrees
- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.
Answer:
Net force will be 4.875 N
Explanation:
We have given mass of the cart m = 1.5 kg
Initial velocity of the cart = 0.2 m/sec
And final velocity of the car = - 0.125 m/sec ( Negative direction is due to opposite direction )
Instant of time 
Change in momentum is given by

Now force is given by

Net force will be 4.875 N
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.