Answer:
o
Explanation:
The athlete ran a total distance of zero because they ran 100m forward then turned around so they went back to their starting position
Answer: option c) equal to the angle of reflection.
HOPE IT HELPS YOU
HAVE A GOOD DAY ❤️☺️
The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Because gravity has been known to define as a force of attraction between things that have mass.
The correct answer to the question is vertically downward i.e towards the centre of earth.
EXPLANATION:
As per the question, the box is pulled to the right.
Hence, the direction of the applied force is towards right.
We are asked to determine the direction of the gravitational force that acts on the body.
Before answering this question, first we gave to understand the gravitational force of earth.
Any body present on the surface of earth is attracted with the force of gravity of earth ( gravitational force ) towards its centre. It is equivalent to the weight of the body.
The force of gravity is always directed towards the centre of earth irrespective of the nature of applied force.
Hence, the direction of the gravitational force which acts on the box is vertically downward.