Answer:
b,c,d
Explanation:
gasses exert pressure, all particles of a gas sample move at the same speed. gas particles can exchange kinetic energy when they collide.
Answer:
2.01 moles of P → 1.21×10²⁴ atoms
2.01 moles of N → 1.21×10²⁴ atoms
4.02 moles of Br → 2.42×10²⁴ atoms
Explanation:
We begin from this relation:
1 mol of PNBr₂ has 1 mol of P, 1 mol of N and 2 moles of Br
Then 2.01 moles of PNBr₂ will have:
2.01 moles of P
2.01 moles of N
4.02 moles of Br
To determine the number of atoms, we use the relation:
1 mol has NA (6.02×10²³) atoms
Then: 2.01 moles of P will have (2.01 . NA) = 1.21×10²⁴ atoms
2.01 moles of N (2.01 . NA) = 1.21×10²⁴ atoms
4.02 moles of Br (4.02 . NA) = 2.42×10²⁴ atoms
6.349 g mass of anhydrous magnesium sulfate will remain.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 × 1023 of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
Molar mass MgSO₄.7 H₂O = 246.52 g/mol


0.0527 moles
Molar mass MgSO₄ = 120.4 g/mol
Mass of anhydrous magnesium sulfate :
( 0.0527 x 120.4 ) => 6.349 g
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
The number of calories that are required to change the temperature of 2.18 g of water from 15.3 c to 69.5 c is <u>118.16 cal</u>
<u><em> calculation</em></u>
- Heat in calories = MCΔ T where,
- M(mass)= 2.18 g
- C(specific heat capacity)= 1.00 cal/g/c
- ΔT( change in temperature)= 69.5- 15.3 =54.2 c
heat is therefore= 2.18 g x 1.00 cal/g/c x 54.2 c=118.16 cal
The reaction that would take place if hot tungsten was
surrounded by air is that it would react to the oxygen in air to form non
conducting tungsten oxide and burns out instantly.