Answer:
i think its true but I’m not sure
Explanation:
I know that they can. Be mixed
Answer:
22.7%
Explanation:
We must first put down the equation of reaction to guide our work while solving the problem.
KCN(aq) + HCl (aq)--> KCl(aq) + HCN(aq)
The questions specifically state that HCl is in excess so KCN is the limiting reactant.
Number of moles of KCN reacted= mass of KCN reacted / molar mass of KCN
Mass of KCN reacted= 3.2 g
Molar mass of KCN= 65.12 g/mol
Number of moles of KCN= 3.2/65.12 g/mol= 0.049 moles
Theoretical yield of HCN is obtained thus;
From the reaction equation;
1 mol of KCN produced 1 mole of HCN thus 0.049 moles of KCN will produce 0.049 moles of HCN.
Mass of HCN = number of moles ×molar mass
Molar mass of HCN= 27.0253 g/mol
Hence mass of HCN produced= 0.049mol × 27.0253 g/mol= 1.32g of HCN
Actual yield of HCN= 0.30g
% yield= actual yield/ theoretical yield ×100
% yield= 0.30/1.32 ×100
%yield= 22.7%
Hello!
The balanced equation for the
neutralization of KOH is the following:
HCl(aq) + KOH(aq) → KCl(aq) + H₂O(l)
To calculate the
volume of HCl required, we can apply the following equation:
So, the required volume of HCl is
541,54 mLHave a nice day!
Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
4.17 moles. Good luck! :)