Answer:
The answer to your question is:
Explanation:
Data
carbon 7.3% = 7.3g
hydrogen 4.5% = 4.5g
oxygen 36.4% = 36.4 g
nitrogen 31.8% = 31.8 g
Now
For carbon
12 g --------------------1 mol
7.3 g ------------- x
x = 7.3/12 = 0.608 mol
For hydrogen
1 g -------------------- 1 mol
4.5 g ------------------ x
x = 4.5 mol
For oxygen
16 g ------------------- 1 mol
36.4 g ---------------- x
x = 2.28 mol
For nitrogen
14 g ---------------- 1 mol
31.8 g --------------- x
x = 2.27 mol
Now divide by the lowest result, the is 0.608 from carbon
carbon 0.608/0.608 = 1
hydrogen 4.5/ 0.608 = 7.4
oxygen 2.28/0.608 = 3.75
nitrogen 2.27/0.608 = 3.73
Empirical formula = CH₇O₄N₄
Answer:
Electronegativity generally increases from left to right across a period,
Explanation:
The true statement from the given choices is that electronegativity generally increases from left to right across a period.
Electronegativity is the measure of the relative tendency with which an atom of the element attract valence electrons in a chemical bond.
Across a period electronegativity increases from left to right and decreases down the group.
This is due to reduction in metallic properties as we move across the period from left to right.
Answer:
Example
0.5 mol of sodium hydroxide is dissolved in 2 dm3 of water. Calculate the concentration of the sodium hydroxide solution formed.
Concentration =
Concentration = 0.25 mol/dm3
Volume units
Volumes used in concentration calculations must be in dm3, not in cm3. It is useful to know that 1 dm3 = 1000 cm3. This means:
divide by 1000 to convert from cm3 to dm3
multiply by 1000 to convert from dm3 to cm3
For example, 250 cm3 is 0.25 dm3 (250 ÷ 1000). It is often easiest to convert from cm3 to dm3 before continuing with a concentration calculation.
Question
100 cm3 of dilute hydrochloric acid contains 0.02 mol of dissolved hydrogen chloride. Calculate the concentration of the acid in mol/dm3.
Reveal answer
Converting between units
The relative formula mass of the solute is used to convert between mol/dm3 and g/dm3:
to convert from mol/dm3 to g/dm3, multiply by the relative formula mass
to convert from g/dm3 to mol/dm3, divide by the relative formula mass
Remember: the molar mass is the Ar or Mr in grams per mol.
Example
Calculate the concentration of 0.1 mol/dm3 sodium hydroxide solution in g/dm3. (Mr of NaOH = 40)
Concentration = 0.1 × 40
= 4 g/dm3
Answer:
HF
H₂S
H₂CO₃
NH₄⁺
Explanation:
<em>Which acid in each of the following pairs has the stronger conjugate base?</em>
According to Bronsted-Lowry acid-base theory, <em>the weaker an acid, the stronger its conjugate acid</em>. Especially for weak acids, pKa gives information about the strength of such acid. <em>The higher the pKa, the weaker the acid.</em>
<em />
- Of the acids HCl or HF, the one with the stronger conjugate base is HF because it is a weak acid.
- Of the acids H₂S or HNO₂, the one with the stronger conjugate base is H₂S because it is a weaker acid. pKa (H₂S) = 7.04 > pKa (HNO₂) = 3.39
- Of the acids H₂CO₃ or HClO₄, the one with the stronger conjugate base is H₂CO₃ because it is a weak acid.
- Of the acids HF or NH₄⁺, the one with the stronger conjugate base is NH₄⁺ because it is a weaker acid. pKa (HF) = 3.17 < pKa (NH₄⁺) = 9.25
Explanation:
Percentage composition of oxygen = (80/134) * 100% = 59.7%.