Answer:
4.90 M
Explanation:
In case of titration , the following formula can be used -
M₁V₁ = M₂V₂
where ,
M₁ = concentration of acid ,
V₁ = volume of acid ,
M₂ = concentration of base,
V₂ = volume of base .
from , the question ,
M₁ = ? M
V₁ = 125.0 mL
M₂ = 4.56 M
V₂ = 134.1 mL
Using the above formula , the molarity of acid , can be calculated as ,
M₁V₁ = M₂V₂
Substituting the respective values ,
M₁ * 125.0 mL = 4.56 M * 134.1 mL
M₁ = 4.90 M
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
B the atomic number is 20 and then you subtract atomic mass to find the neutrons
Answer:
it would break when it hits the ground
Explanation: