Answer:
Li atoms readily give up one electron to form positively charged, Li+ ions. These ions have the same stable electron configuration as the noble gas helium. All Group 1 atoms can lose one electron to form positively charged ions.
Explanation:
I think the correct answer from the choices listed above is option A. <span>In an exothermic reaction, the bonding energy of the product is </span><span>less than the reactant because it is only at this condition that the energy is released by the reaction.</span>
Answer:
Kc = 168.0749
Explanation:
initial mol: 0.822 0 0
equil. mol: 2(0.822 - x) x x
∴ [ HI ]eq = 0.055 mol/L = 2(0.822 - x) / (1.11 L )
⇒ 1.644 - 2x = 0.055 * 1.11
⇒ 1.644 = 2x + 0.06105
⇒ 2x = 1.583
⇒ x = 0.7915 mol equilibrium
⇒ [ H2 ] eq = 0.7915mol / 1.11L = 0.7130 M = [ I2 ] eq
⇒ Kc = ([ H2 ] * [ I2 ]) / [ HI ]²
⇒ Kc = ( 0.7130² ) / ( 0.055² )
⇒ Kc = 168.0749
Answer: The concentration of
is 0.234 M
Explanation:
According to the neutralization law,
where,
= basicity
= 2
= molarity of
solution = ?
= volume of
solution = 50.0 ml
= acidity of
= 1
= molarity of
solution = 0.375 M
= volume of
solution = 62.5 ml
Putting in the values we get:
Therefore concentration of
is 0.234 M
Answer:
SAMPLE A - pure substance.
SAMPLE B - homogeneous mixture.
SAMPLE C - heterogeneous mixture.
Explanation: