The speed of the mass : <em><u>v = 0.316 m/s</u></em>
<h3>Further explanation</h3>
The energy used to press a spring is included as the potential energy
Can be formulated:

Ep= potential energy
k = spring constant
x = change in spring length
If the spring is released from its pressure, this potential energy will turn into kinetic energy
so applies the law of conservation of mechanical energy (Em)
Ek = Ep
A mass of 2 kg is attached to a spring, a spring constant of 20 N/m, and the spring is compressed 0.1 m past its natural length.
m = 2 kg
k = 20 N/m
x = 0.1 m

<h3>Learn more</h3>
Hooke's law
brainly.com/question/2648431
Keywords : spring,mass, spring constant,compressed position
Answer:
Exfoliation or Unloading. As upper rock portions erode, underlying rocks expand. ...
Thermal Expansion. Repeated heating and cooling of some rock types can cause rocks to stress and break, resulting in weathering and erosion. ...
Organic Activity. ...
Frost Wedging. ...
Crystal Growth.
Explanation:
False because opposites attract. :)
Answer:
Explanation:
capacitance of sphere 2 will be 4.5 times sphere 1
a ) when spheres are in contact they will have same potential finally . So
V_1 / V_2 = 1
b )
Charge will be distributed in the ratio of their capacity
charge on sphere1 = q x 1 / ( 1 + 4.5 )
= q / 5.5
fraction = 1 / 5.5
c ) charge on sphere 2
= q x 4.5 / 5.5
fraction = 4.5 / 5.5
d ) surface charge density of sphere 1
= q /( 5.5 x A ) where A is surface area
surface charge density of sphere 2
= q x 4.5 /( 5.5 x 4.5² A ) where A is surface area
= q /( 5.5 x 4.5 A )
q_1/q_2 = 4.5
- Initial velocity=u=72km/h
Convert to m/s

- Final velocity=v=0m/s
- Time=2s=t




Using second equation of kinematics





Now
Using newtons second law



- Force is in opposite direction so its negative
