Answer:
The answer are given above in attachment.
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
Here we can use momentum conservation as in this type of collision there is no external force on it

now here we can say




now here we can say


now by coefficient of restitution
for elastic collision we know that e = 1


now by solving the two equation


also we know that

so final speed of the nail is 6.875 m/s
<span>The shortening velocity refers to the speed of the contraction from the muscle shortening while lifting a load. Maximal shortening velocity is only attained with a minimal load. With a light load, the shortening velocity is at its Maximal shortening velocity. When the weight is heavy, the speed in which the muscle lifts the weight decreases in speed at a slower velocity.</span>
The force of gravity between Earth and Mars will decrease.
The gravitational law is given as-
F = G mM/r²
here, m= mass of rocket
M = mass of earth
r = distance between earth and rocket
So, as rocket takes off from earth and fly towards mars then the distance starts to increase between earth and rocket, and the gravitational pull between them starts to weaken. Then a point will reach when rocket will far from gravity of earth and could probably enter the gravity of Mars.
Learn more about gravitational law here:
brainly.com/question/12101547
#SPJ4