8) the energy released by fusion is generally 3 to 4 times larger than with fission. Fission has very few by-products but fusion releases large amounts of radioactive particles because it starts with large nuclei.
9) Alpha particles are 2 protons and 2 neutrons all put together. It's really the nucleus of a helium atom. It is most dangerous if you ingest it but it can be stopped with a sheet of paper so outside the body it's not as dangerous as others and due to its size it can't get very far in the air before hitting air molecules
beta particles are high energy electrons or positrons. They travel further due to their small size but can be stopped by a thin barrier of plastic or wood.
Gamma rays are high frequency photons (light) They are stopped by metal plates and go through human tissue. They are quite dangerous.
10) The mass that is lost in chemical reactions is very small. Solve E=mc² for mass and you get m=E/c². This says the mass you lose is equal to the energy you gained divided by the speed of light squared. c² is a VERY big number so you need a lot of energy produced to notice it. Chemical reactions are simply too inefficient to get that much energy out.
11)You need high temperatures for fusion because you're trying to push two atoms together (to "fuse" them as the name suggests) The electrons in one atom repel the other electrons in the other atoms. When stripped down to only protons, you still have to overcome this repulsion (Coulomb repulsion). High temperatures means high velocity of the particles in the plasma. This gives them enough "oomph" to get close enough to fuse. Once close enough to each other, the nuclear force takes over and overwhelms the Coulomb repulsion and the nuclei fuse and release energy in doing so.
Answer:
The angle formed of the rope with the surface = 40°
Force applied = 125Newtons
The displacement covered by the box =25metres
W= FDcos theta
[125×40×cos(40°) ] Joules
= [ (3125×0.76604444311)]Joules
= 2393.88888472 joules(ans)
Hope it helps
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer: The speed will be 30 m/s .
Explanation:
Given: Initial velocity of the car: u = 0 m/s
Constant Acceleration: a = 5 m/s²
Time: t= 6 seconds
To find: Final velocity(v)
Formula: v = u+at
Substitute values in the formula, we get
v= 0+(5)(6) m/s
⇒ v= 30 m/s
i.e. Final velocity = 30 m/s
Hence, the speed will be 30 m/s .