Im pretty sure the answer would be A
Explanation:
Let us assume that forces acting at point B are as follows.

= 0 ...... (1)
= 0
= 0 .......... (2)
Hence, formula for allowable normal stress of cable is as follows.

T = 
= 3925 kip
From equation (1),
= -3925
= -3925
= 12877.29 kip
From equation (2), -12877.29 (Cos 60) + W = 0
= 0
W = 6438.64 kip
Thus, we can conclude that greatest weight of the crate is 6438.64 kip.
Lindsay has to fly this plane towards this direction [W 12.5° S] to get to Hamilton.
From this question, the plane is still up in the air.
We have wind blowing in [W 60° N ]
To solve the problem we have to make use of the sine rule

We put the values in the equation, we have:
50/Sinθ = 200/sin60°
The next step is to cross multiply
50 x sin60° = 200Sinθ
50 x 0.8660 = 200sinθ
We make Sin θ the subject
Sine θ = 43.30/200
sine θ = 0.2165
we find the value of θ
θ = sine⁻¹(0.2165)
θ = 12.50
So Lindsay has to fly this plane towards this direction
[W 12.5° S]
Here is a similar question brainly.com/question/13338067?referrer=searchResults