Answer:
EAR = (1+APR/m)^m - 1 where m=compounding periods
1. 0.116 = (1+APR/2)^2 - 1
(1+0.116) = (1+APR/2)^2
(1.116)^(1/2) = 1+APR/2
APR = [(1.107)^(1/2) - 1]*2
APR = [1.05214067501 - 1]*2
APR = 0.05214067501 * 2
APR = 0.10428135002
APR = 10.43%
2. 0.116 = (1+APR/12)^12-1
APR = [(1+0.116)^(1/12)-1]*12
APR = [1.116^(1/12) - 1] * 12
APR = [1.00918785692 - 1] * 12
APR = 0.00918785692 * 12
APR = 0.11025428304
APR = 11.05%
3. 0.093 = (1+APR/52)^52 - 1
APR = [(1+0.093)^(1/52) - 1] * 52
APR = [1.093^(1/52) - 1] * 52
APR = [1.0017115825 - 1] * 52
APR = 0.0017115825 * 52
APR = 0.08900229
APR = 8.90%