A. How much work is being done to hold the beam in place?
Work is the product of Force and Displacement. Since there
is no Displacement involved in just holding the beam in place, hence the work
is zero.
B. How much work was done to lift the beam?
In this case, force is simply equal to weight or mass
times gravity. Hence the work is:
Work = weight * displacement
Work = 500 lbf * 100 ft
Work = 50,000 lbf * ft
C. How much work would it take if the steel beam were
raised from 100 ft to 200ft?
The displacement is still 100 ft since 200 – 100 = 100 ft,
hence the work done is still similar in B which is:
<span>Work = 50,000 lbf * ft</span>
Answer:
Hey guess what there's no question genius
Explanation:
Draw the free body diagram for the mass W2.
In it the only forces that appear are W2 (downward) and the Tension of the cable A (upward), TA
Net force = 0 => W2 = TA
Then TA = 200 N
Today's cosmologists assume that matter was not uniformly distributed in the universe after the Big Bang. Dense places attract more matter than the surrounding area according to their gravitational forces. Over the course of billions of years, these gas agglomerations eventually led to the formation of the galaxies we see today.
What does thrice mean not being mean or anything just saying so I can help with the question