Dear friend,
How are you doing? I finally switched to my new school and it's been so hard adjusting. But I know I have a new chance at making new friends and memories. Also, I can learn new things, like interacting with new people and how to keep my anxiety low. I really miss us hanging out and how much we'd laugh and get in trouble at class. But i really hope to see you soon & that it hasn't gone terribly wrong for you since i left.
your friend,
name
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ
Answer:
The correct answer is there is a mistake in the calculation. The second law of thermodynamics state that in any spontaneous process there is an increase in the entropy of the universe.
Explanation:
According to the second law a reaction will occur in a system spontaneously if the total entropy of both system and surrounding increases during the reaction.That means in case of spontaneous reaction entropy change is always positive.
But according to the question the reaction H2+F2=2HF is spontaneous in all temperature.So according to the second law of thermodynamics i can say that my classmate made a mistake in calculation that"s why his result for entropy change comes negative.
It defines the element. If you change the protons, you change the type of element. A proton is positively charged and is most of the mass of the atom, next to the neutron. Neutrons have a very very very slightly higher mass.