Equivalent expressions are expressions of equal values
The equivalent expressions are 4x+ (y - 8y) + (2z-5z) +6 and 6x-3x-6x + (2y - 10y) + (4 - 8) + (z - 88z)
<h3>How to determine the equivalent expressions</h3>
The first expression has been solved.
So, we have the following expressions
4x−7y−5z+6 and -3x−8y−4−87z
<u>4x−7y−5z+6</u>
We have:
4x-7y-5z+6
Rewrite as:
4x+ (y - 8y) + (2z-5z) +6
<u>-3x−8y−4−87z</u>
We have:
-3x−8y−4−87z
Rewrite as:
3x-6x + (2y - 10y) + (4 - 8) + (z - 88z)
Hence, the equivalent expressions are 4x+ (y - 8y) + (2z-5z) +6 and 6x-3x-6x + (2y - 10y) + (4 - 8) + (z - 88z)
Read more about equivalent expressions at:
brainly.com/question/2972832
Answer:
16320
solution: 12 / 1/4 = 3.
4 divided by 1/4 = 20
4 1/4 divided by 1/4 = 17.
3 x 20 x 17 =
the answer is 16320.
Answer:
y = mx + b
Step-by-step explanation:
Answer: 18°
Step-by-step explanation:
Complementary angles are any two angles whose sum is 90 degrees. Hence, if angles x and y are complimentary, we can say
x + y = 90°
Therefore, the complimentary angle of 72° is obtained by subtracting 72° from 90°
i.e 90° - 72° = 18°
Thus, the complimentary angle of 72° is 18°
The minimum distance will be along a perpendicular line to the river that passes through the point (7,5)
4x+3y=12
3y=-4x+12
y=-4x/3+12/3
So a line perpendicular to the bank will be:
y=3x/4+b, and we need it to pass through (7,5) so
5=3(7)/4+b
5=21/4+b
20/4-21/4=b
-1/4=b so the perpendicular line is:
y=3x/4-1/4
So now we want to know the point where this perpendicular line meets with the river bank. When it does y=y so we can say:
(3x-1)/4=(-4x+12)/3 cross multiply
3(3x-1)=4(-4x+12)
9x-3=-16x+48
25x=51
x=51/25
x=2.04
y=(3x-1)/4
y=(3*2.04-1)/4
y=1.28
So now that we know the point on the river that is closest to Avery we can calculate his distance from that point...
d^2=(x2-x1)^2+(y2-y1)^2
d^2=(7-2.04)^2+(5-1.28)^2
d^2=38.44
d=√38.44
d=6.2 units
Since he can run at 10 uph...
t=d/v
t=6.2/10
t=0.62 hours (37 min 12 sec)
So it will take him 0.62 hours or 37 minutes and 12 seconds for him to reach the river.