Answer:
This causes higher average tidal ranges. The gravitational pull of the Sun and moon on Earth combined cause high tides that will be higher and low tides that will be lower than average.
I believe that the answer to this would be B
Hope this helped
Answer:
D
Explanation:
The answer is D because:
A) Only doctors are allowed to prescribe medications.
B) Rita is not a chef/cook.
C) Rita is not a personal trainer
D) The job of a dietican is to provide reccomendations to their clients in order for them to implement a healthy lifestyle via consuming what is best for them.
Hope this helps :)
Answer:
Water cannot be used in thermometer because of its higher freezing point and lower boiling point than other liquids . If water is used in a thermometer , it will start phase change at 0
C and 100
C and will not measure temperature , out of this range . This range is very small as compared to other liquids as mercury , having freezing point about −39
C and boiling point 356
C.
Explanation:
Complete Question
A small object moves along the x-axis with acceleration ax(t) = −(0.0320m/s3)(15.0s−t)−(0.0320m/s3)(15.0s−t). At t = 0 the object is at x = -14.0 m and has velocity v0x = 7.10 m/s. What is the x-coordinate of the object when t = 10.0 s?
Answer:
The position of the object at t = 10s is 
Explanation:
From the question we are told that
The acceleration along the x axis is 
The position of the object at t = 0 is x = -14.0 m
The velocity at t = 0 s is 
Generally from the equation for acceleration along x axis we have that

=> 
=> ![V_{x} = -0.032 [15t - \frac{t^2 }{2} ]+ K_1](https://tex.z-dn.net/?f=V_%7Bx%7D%20%3D%20-0.032%20%5B15t%20-%20%5Cfrac%7Bt%5E2%20%7D%7B2%7D%20%5D%2B%20K_1)
At t =0 s and 
=> ![7.10 = -0.032 [15(0) - \frac{(0)^2 }{2} ]+ K_1](https://tex.z-dn.net/?f=7.10%20%20%3D%20-0.032%20%5B15%280%29%20-%20%5Cfrac%7B%280%29%5E2%20%7D%7B2%7D%20%5D%2B%20K_1)
=>
So
![\frac{dX}{dt} = -0.032 [15t - \frac{t^2 }{2} ]+ K_1](https://tex.z-dn.net/?f=%5Cfrac%7BdX%7D%7Bdt%7D%20%20%3D%20-0.032%20%5B15t%20-%20%5Cfrac%7Bt%5E2%20%7D%7B2%7D%20%5D%2B%20K_1)
=> ![\int\limits dX = \int\limits [-0.032 [15t - \frac{t^2 }{2} ]+ K_1] }{dt}](https://tex.z-dn.net/?f=%5Cint%5Climits%20dX%20%20%3D%20%5Cint%5Climits%20%5B-0.032%20%5B15t%20-%20%5Cfrac%7Bt%5E2%20%7D%7B2%7D%20%5D%2B%20K_1%5D%20%7D%7Bdt%7D)
=> ![X = -0.032 [ 15\frac{t^2}{2} - \frac{t^3 }{6} ]+ K_1t +K_2](https://tex.z-dn.net/?f=X%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7Bt%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7Bt%5E3%20%7D%7B6%7D%20%5D%2B%20K_1t%20%2BK_2)
At t =0 s and x = -14.0 m
![-14 = -0.032 [ 15\frac{0^2}{2} - \frac{0^3 }{6} ]+ K_1(0) +K_2](https://tex.z-dn.net/?f=-14%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7B0%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7B0%5E3%20%7D%7B6%7D%20%5D%2B%20K_1%280%29%20%2BK_2)
=> 
So
![X = -0.032 [ 15\frac{t^2}{2} - \frac{t^3 }{6} ]+ 7.10 t -14](https://tex.z-dn.net/?f=X%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7Bt%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7Bt%5E3%20%7D%7B6%7D%20%5D%2B%207.10%20t%20-14)
At t = 10.0 s
![X = -0.032 [ 15\frac{10^2}{2} - \frac{10^3 }{6} ]+ 7.10 (10) -14](https://tex.z-dn.net/?f=X%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7B10%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7B10%5E3%20%7D%7B6%7D%20%5D%2B%207.10%20%2810%29%20-14)
=> 