Answer:
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era
Explanation:
The Mesozoic era is well known and most famous because of the rule of the dinosaurs which were the dominant animals for most of this are. Also, it is the era in which the mammals appeared, though they lived in the shadows of the dinosaurs and only became dominant after their extinction. Another important evolution that took place and is not mentioned very often is the appearance of the first flowering plants. This was a revolutionary trait for the plants, and it helped them to survive in the changing climate on Earth. Soon this trait enabled this type of plants to spread out significantly and to become one of the most dominant organisms on the planet in the following era.
The answer is 0.245N.
<h3>What is kinetic energy?</h3>
- A particle or an item that is in motion has a sort of energy called kinetic energy. An item accumulates kinetic energy when work, which involves the transfer of energy, is done on it by exerting a net force.
- Kinetic energy comes in five forms: radiant, thermal, acoustic, electrical, and mechanical.
- The energy of a body in motion, or kinetic energy (KE), is essentially the energy of all moving objects. Along with potential energy, which is the stored energy present in objects at rest, it is one of the two primary types of energy.
- Explain that a moving object's mass and speed are two factors that impact the amount of kinetic energy it will possess.
(b) 0.100
For the block on the left,
∑=
–0.308N+0.245N=(0.250kg)a
a=−0.252 if the force of static friction is not too large.
For the block on the right, ==0.490N. The maximum force of static friction would be larger, so no motion would begin, and the acceleration is zero
To learn more about kinetic energy, refer to:
brainly.com/question/25959744
#SPJ4
Answer:
power
Explanation:
it helps to do work without power we cant do any things
Answer:
Explanation:
For resistance of a wire , the formula is as follows .
R = ρ L/S
where ρ is specific resistance , L is length and S is cross sectional area of wire .
for first wire resistance
R₁ = ρ 3L/3a = ρ L/a
for second wire , resistance
R₂ = ρ 3L/6a
= .5 ρ L/a
For 3 rd wire resistance
R₃ = ρ 6L/3a
= 2ρ L/a
For fourth wire , resistance
R₄ = ρ 6L/6a
= ρ L/a
So the smallest resistance is of second wire .
Its resistance is .5 ρ L/a