There are 3 bases before you reach home plate.
Answer:
the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
Explanation:
Given;
diameter of the ceiling fan, d = 90 cm = 0.9 m
angular speed of the fan, ω = 64 rpm
time taken for the fan to stop, t = 28 s
The distance traveled by the ceiling fan when it comes to a stop is calculated as;

The speed of the tip of a blade 10 s after the fan is turned off is calculated as;

Therefore, the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
Answer:
The mass of the box:
m = 60 kg
Explanation:
Given:
F = 150 N
g = 10 m/s²
_________
m - ?
Coefficient of friction wood on wood:
μ = 0.25
Friction force:
F₁ = μ*m*g
Newton's Third Law:
F = F₁
F = μ*m*g
The mass of the box:
m = F / ( μ*g) = 150 / (0.25*10) = 60 kg
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling
the initial momentum of object X and
the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):
