Answer:
Color, Streak, luster, cleavage and fracture, hardness, crystal shape, and density.
Explanation:
Answer:
b) true. The jobs are equal
Explanation:
The work on a body is the scalar product of the force applied by the distance traveled.
W = F. d
Work is a scalar, the work equation can be developed
W = F d cos θ
Where θ is the angle between force and displacement
Let's apply these conditions to the exercise
a) False, if we see the expression d cosT is the projection of the displacement in the direction of the force, so there may be several displacement, but its projection is always the same
b) true. The jobs are equal dx = d cosθ
c) False, because the force is equal and the projection of displacement is the same
d) False, knowledge of T is not necessary because the projection of displacement is always the same
e) False mass is not in the definition of work
Answer:
Part A) the angular acceleration is α= 44.347 rad/s²
Part B) the angular velocity is 195.13 rad/s
Part C) the angular velocity is 345.913 rad/s
Part D ) the time is t= 7.652 s
Explanation:
Part A) since angular acceleration is related with angular acceleration through:
α = a/R = 10.2 m/s² / 0.23 m = 44.347 rad/s²
Part B) since angular acceleration is related
since
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(3.4 s - 2.8 s) = 44.88 m/s
since
ω = v/R = 44.88 m/s/ 0.230 m = 195.13 rad/s
Part C) at t=0
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(0 s - 2.8 s) = 79.56 m/s
ω = v/R = 79.56 m/s/ 0.230 m = 345.913 rad/s
Part D ) since the radial acceleration is related with the velocity through
ar = v² / R → v= √(R * ar) = √(0.23 m * 9.81 m/s²)= 1.5 m/s
therefore
v = v0 + a*(t-t0) → t =(v - v0) /a + t0 = ( 1.5 m/s - 51.0 m/s) / (-10.2 m/s²) + 2.8 s = 7.652 s
t= 7.652 s
Answer:
4 m/s² down
Explanation:
We'll begin by calculating the net force acting on the object.
The net force acting on the object from the left and right side is zero because the same force is applied on both sides.
Next, we shall determine the net force acting on the object from the up and down side. This can be obtained as follow:
Force up (Fᵤ) = 15 N
Force down (Fₔ) = 25 N
Net force (Fₙ) =?
Fₙ = Fₔ – Fᵤ
Fₙ = 25 – 15
Fₙ = 10 N down
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Mass (ml= 2.5 Kg
Net force (Fₙ) = 10 N down
Acceleration (a) =?
Fₙ = ma
10 = 2.5 × a
Divide both side by 2.5
a = 10 / 2.5
a = 4 m/s² down
Therefore, the acceleration of the object is 4 m/s² down
Answer:
The answer is "
"
Explanation:

velocity of car | respect to car :
