ΔG° for the reaction is 5.47kJ mol⁻¹.
The energy that a substance has available for utilization in a chemical reaction or transformation is known as the Gibbs free energy. Things frequently change into other things that have less Gibbs free energy. The Gibbs free energy change indicates whether a chemical reaction will take place spontaneously or not.
By using the formula;
ΔG° = −RTlnKp
Where,
R = 8.3Jk⁻¹mol⁻¹
T = Temperature = 427 + 273 = 700 K
Kp = 8×10⁻⁵(given)
Substituting the value, we get,
ΔG° = −8.3 × 700 × ln(23×10⁻⁵)
ΔG° = −8.3 × 700 × (ln(2³)+ln 10⁻⁵)
= - 8.3 × 700 × (ln(2³)+ln 10⁻⁵)
= − 8.3 × 700 × (2.07−11.5)
=5.47×10⁴Jmol¹
=5.47kJ mol⁻¹
Therefore, ΔG° for the reaction is 5.47kJ mol⁻¹.
Learn more about Gibbs free energy here:
brainly.com/question/13765848
#SPJ4
Answer: NO2, NO, and O2.
<span>Free radicals are toxic substances produced by the body. In normal circumstances,the body can neutralize but<span>
when the level of these substances is to much,they accumulate
and can generate diseases,
such as osteoporosis and cancer.</span></span>
Strong and good for you bro
The lime water would become cloudy :)
From the stoichiometry of the combustion reaction, we can see that 7.4 L of oxygen is consumed.
<h3>What is combustion?</h3>
Combustion is a reaction in which a substance is burnt in oxygen. The equation of the reaction is; C4H10O(l) + 6O2 (g) → 4CO2 (g) + 5H2O(l)
We can obtain the number of moles of CO2 from;
PV = nRT
n = 1.02 atm * 7.15 L/0.082 atm LK-1mol-1 * (125 + 273) K
n = 7.29 /32.6
n = 0.22 moles
If 6 moles of oxygen produces 4 moles of CO2
x moles of oxygen produces 0.22 moles of CO2
x = 0.33 moles
1 mole of oxygen occupies 22.4 L
0.33 moles of oxygen occupies 0.33 moles * 22.4 L/ 1 mole
= 7.4 L of oxygen
Learn more about stoichiometry: brainly.com/question/13110055
#SPJ1