Answer:
An acute injury is sudden and severe such as a broken bone. A chronic injury develops and worsens over an extended period of time like shin splints
Explanation:
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m
Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Answer:
C
Explanation:
Formula E=F/C also E=V/d
In this case use the second formula; E=V/d
Data given; E=4N/C d=8m
So v=E X d
V=4x8=32V
k.e=eV= 2X32=64eV
Answer:
The induced emf in the coil is 0.522 volts.
Explanation:
Given that,
Radius of the circular loop, r = 9.65 cm
It is placed with its plane perpendicular to a uniform 1.14 T magnetic field.
The radius of the loop starts to shrink at an instantaneous rate of 75.6 cm/s , 
Due to the shrinking of radius of the loop, an emf induced in it. It is given by :

So, the induced emf in the coil is 0.522 volts.