Answer: 1433.3 m/min
Explanation:
For 86 Km/h converted to a (m/min), convert kilometers to meters, and hour to minutes
So, 86 Km/h means 86 kilometers per 1 hour
- If 1 kilometer = 1000 metres
86 kilometers = 86 x 1000 = 86,000m
- If 1 hour = 60 minute
1 hour = 60 minutes
In m/min: (86,000m / 60 minute)
= 1433.3 m/min
Thus, 86 Km/h convert to 1433.3 m/min
Answer:
The rate at which the container is losing water is 0.0006418 g/s.
Explanation:
- Under the assumption that the can is a closed system, the conservation law applied to the system would be:
, where
is all energy entering the system,
is the total energy leaving the system and,
is the change of energy of the system. - As the purpose is to kept the beverage can at constant temperature, the change of energy (
) would be 0. - The energy that goes into the system, is the heat transfer by radiation from the environment to the top and side surfaces of the can. This kind of transfer is described by:
where
is the emissivity of the surface,
known as the Stefan–Boltzmann constant,
is the total area of the exposed surface,
is the temperature of the surface in Kelvin,
is the environment temperature in Kelvin. - For the can the surface area would be ta sum of the top and the sides. The area of the top would be
, the area of the sides would be
. Then the total area would be 
- Then the radiation heat transferred to the can would be
. - The can would lost heat evaporating water, in this case would be
, where
is the rate of mass of water evaporated and,
is the heat of vaporization of the water (
). - Then in the conservation balance:
, it would be
. - Recall that
, then solving for
:
<span>So we want to know what statement is an accurate description of vibrations. So humans can hear sound frequencies from 20-20000 Hz. Below 20 Hz is infra sound and above 20000 Hz is ultra sound. Humans cant hear both infra sound and ultra sound so the correct answer is A.</span>
The answer is strong winds, i hoped this helped.
→if this helped please mark brainliest i need to level up←
Answer: 100 suns
Explanation:
We can solve this with the following relation:

Where:
is the diameter of a dime
is the diameter of the Sun
is the distance between the Sun and the pinhole
is the amount of dimes that fit in a distance between the sunball and the pinhole
Finding
:


This is roughly the diameter of the Sun
Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

So, we have to divide this distance between
in order to find how many suns could it fit in this distance:
