AnMolar mass of CuCO3 = 123.5549 g/mol
This compound is also known as Copper(II) Carbonate.
Convert grams CuCO3 to moles or moles CuCO3 to grams
Molecular weight calculation:
63.546 + 12.0107 + 15.9994*3
Percent composition by element
Element Symbol Atomic Mass # of Atoms Mass Percent
Copper Cu 63.546 1 51.431%
Carbon C 12.0107 1 9.721%
Oxygen O 15.9994 3 38.848%
Explanation:
Answer:

Explanation:
A simple pendulum is a system consisting of a mass attached to a string, and oscillating in a periodic motion, back and forth, along an equilibrium position.
The period of a pendulum is the time it takes for the pendulum to complete one oscillation.
The period of a pendulum is given by the equation

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that the period of a pendulum does not depend on the mass.
Therefore, the only 2 factors affecting the period of a pendulum are:
- The length of the pendulum: the longer it is, the longer the period of oscillation
- The acceleration due to gravity: the greater it is, the shorter the period of the pendulum
Answer:
<em>U = 66,150 J</em>
Explanation:
<u>Gravitational Potential Energy</u>
Gravitational potential energy is the energy stored in an object because of its vertical position or height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or
.
The child of mass m=45 Kg is perched above a h=150 m ravine. His gravitational potential energy is:

U = 66,150 J
The thing that pushes the object up while it is falling is air. This force is known as "air resistance".