Displacement is B) the shortest distance between the starting point and the ending point of a motion
Explanation:
Displacement is a vector quantity; it is a vector connecting the initial position to the final position of motion of an object.
Since it is a vector, it has both a magnitude and a direction:
- The magnitude of the displacement is the length of the vector, therefore it corresponds to the shortest distance in a straight line between the starting point and the ending point of the motion
- The direction goes from the starting point to the ending point
Therefore, the correct answer is
B) the shortest distance between the starting point and the ending point of a motion
Note that displacement is very different from distance. Consider for example an object moving in a circle, returning to its initial position: in this case, the distance covered by the object is not zero (it is the length of the circle), however the displacement is zero, because the initial position corresponds to the ending position.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
resultant force = (f1²+f2²)½
=(1.5²+2²)½
=(2.25+4)½
=(6.25)½
=2.5
Explanation:
okay this question seems easy. now if the 1.5 is vertically upwards so is that 2 is horizontally downwards hence as u say its 90 degrees thn it forms a right angled triangle.
Answer:
Explanation:
We know that the pressure can be calculated in the following way:
p = d·g·h
with d being the density of the water, g the gravitational acceleration and h the depth.
Also d of the water = 1000 kg/m^3 circa and g = 9.8 m/s^2 circa
117,500 Pa = 1000kg/m³ · 9.8m/s² · h
Therefore h = 11,9 m
Given parameters;
Time taken to complete a lap = 8.667s
Radius of flower = 13.9cm
convert to SI unit of m, 100cm = 1m
13.9cm gives
= 0.139m
Unknown = speed
To solve this problem, we need to first find the circumference of the flower.
Circumference of the circular flower = 2 π r
where r is the radius of the flower;
Circumference = 2 x 3.142 x 0.139 = 0.87m
Now to find the how fast the bug is travelling,
Speed = 
Since the bug covered 1 lap, the distance is 0.87m
Now input the parameters and solve for speed;
Speed =
= 0.1m/s
The bug is travelling at a speed of 0.1m/s
Explanation:
For air, n1 = 1.00003; for water, n2 = 1.3330
Given: θ2 = 30 degrees, then
θ1 = arcsin [(n2/n1) sin θ2]
= arcsin [(1.3330/1.0003) sin (40)]
= 58.93 degrees
Note that since, in this example, light is traveling from a medium of higher density (water; n2 = 1.3330) to a medium of lower density (air; n1 = 1.0003), then n2 > n1, and the angle of refraction (θ1) is larger than the angle of incidence (θ2), thus the light bends away from the normal (in this example, the vertical) as it leaves the water and enters the air.