At rest because if the distance is not changing, then it is not moving any further, so it must not be moving! The time keeps going no matter what, so the distance, whether it is 0 m or 10,000 km, if the y is horizontal the distance does not change.
It’s true all the way. It’s true
A would be the wavelength, C would be a crest, D would be the amplitude, leaving B which is the trough.
The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
Answer:
Explanation:
We are given the following formula:
(1)
Where:
is the amount of heat
is the mass of water
is the specific heat of water
is the variation in temperature, which in this case is
Rewriting equation (1) with the known values at the right side, we will prove the result is
:
(2)
This is the result