Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
Answer:
1224km/hr
Explanation:
To convert from m/s to km/hr
1000m = 1km
Divide both sides by 1000
1m = 1/1000 km................. (1)
60×60 seconds = 1 hr
3600s = 1hr
Divide both sides by 3600
1s = 1/3600 .............(2)
Divide (2) by (1)
1m/s = 1/1000 ÷ 1/3600 km/hr
1m/s = 1/1000 × 3600/1 km/hr
1m/s = 3600/1000 km/hr
1m/s = 3.6 km/hr .............(3)
To convert 340m/s to km/hr
Multiply (3) by 340
1× 340m/s = 3.6 × 340 km/hr
340m/s = 1224km/hr
I hope this was helpful, please mark as brainliest
Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J