Answer:
V₂ = 107.84 L
Explanation:
Given data:
Initial volume = 100 L
Initial pressure = 80 KPa (80/101 =0.79 atm)
Initial temperature = 200 K
Final temperature =273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁T₂ /T₁P₂
V₂ = 0.79 atm × 100 L × 273 K / 200 K × 1 atm
V₂ =21567 atm.L.K /200 K.atm
V₂ = 107.84 L
Answer:
1.89 nol Cu(NO3)2
Explanation:
if you calculate it it will be 1.89
Answer:
The second ring in an atom can only hold up to 8 electrons.
The total pressure when the new equilibrium is stabilized is half of the initial pressure of the system.
The given chemical reaction at a stable equilibrium is,
2H₂O(g)+O₂(g) = 2H₂O₂(g)
According to the ideal gas equation,
PV = nRT
P is pressure,
V is volume,
n is moles
R is gas constant,
T is temperature.
Assuming the temperature is constant.
If the volume of the system is twice the initial volume then the total pressure at the new equilibrium can be found out as,
P₁V₁ = P₂V₂
Where, P₁ and V₁ are initial volume and pressure while P₂ and V₂ are final pressure and volume.
If V₂ = 2V₁,
P₂ = P₁/2
So, the final total pressure will be half of the initial pressure.
To know more about equilibrium, visit,
brainly.com/question/517289
#SPJ4
Answer:Label the parts of this wave.
A:
✔ crest
B:
✔ amplitude
C:
✔ trough
D:
✔ wavelength
Explanation: