When the temperature increases, the kinetic energy of the particles increase this inturn makes them vibrate
The empirical formula for a compound is KClO3
Explanation
find the moles of each element
moles = % composition/molar mass
molar mass of of potassium =39g/mol ,chlorine = 35.5 g/mol, oxygen =16 g/mol
moles of potassium = 31.9 / 39 = 0.818 moles
moles of chlorine = 28.9/35.5 = 0.814 moles
moles of oxygen = 39.2/ 16 = 2.45 moles
find the mole ratio by dividing with the smallest mole = 0.814 moles
potassium = 0.818/0.814 =1
chlorine = 0.814/0.814 = 1
oxygen = 2.45 /0.814 =3
the empirical formula is therefore = KClO3
Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
<span>the following element that is most reactive </span>would be Fluorine
Answer:15g
Explanation:
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
10g + 5g ➡️ 15g