Answer:
The work done against gravity is 78.4 J
Explanation:
The work is calculated by multiplying the force by the distance that the
object moves
W = F × d, where W is the work , F is the force and d is the distance
The SI unit of work is the joule (J)
We need to find the work done against gravity when lowering a
16 kg box 0.50 m
→ F = mg
→ m = 16 kg, and g = 9.8 m/s²
Substitute these value in the rule
→ F = 16 × 9.8 = 156.8 N
→ W = F × d
→ F = 156.8 N and d = 0.50
Substitute these values in the rule
→ W = 78.4 J
<em>The work done against gravity is 78.4 J</em>
The experiments will involve two billiard balls of known masses, m₁ and m₂, and velocities u₁ and u₂. The two are allowed to collide and the velocities of the balls after the collision v₁ and v₂ are recorded.
The momentum before and after the collision is then calculated as follows:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
<h3>What is the statement of the law of conservation of momentum?</h3>
The law of the conservation of momentum states that the momentum before and after collision in a system of colliding bodies is conserved
The momentum of a body is calculated using the formula below:
Momentum = mass * velocity.
Hence, for the two billiard balls, the momentum before and after the collision is conserved.
Learn more about momentum at: brainly.com/question/1042017
#SPJ1
Answer:
I think D am not pretty show
If there was any way to do that, then your teacher wouldn't
need to keep you coming into class every day and doing
homework every night. She could just give you the 3 or 4
paragraphs and a few pictures that you're asking me for,
and bada-bing ! you'd know it !
The time it takes, and the amount of homework it takes, is
EXACTLY the time you spent hearing about it in class.
(Unless you're some kind of genius savant prodigy, which
you're not and I'm not.)
120m north east hope this helps