Answer:

Explanation:
It is given that,
Speed of the projectile is 0.5 v. Let h is the height above the ground. Using the first equation of motion to find it.


Initial speed of the projectile is v and final speed is 0.5 v.


g is the acceleration due to gravity
Let h is the height above the ground. Using the second equation of motion as :



So, the height of the projectile above the ground is
. Hence, this is the required solution.
Answer:
Explanation:
Let the velocity of projectile be v and angle of throw be θ.
The projectile takes 5 s to touch the ground during which period it falls vertically by 100 m
considering its vertical displacement
h = - ut +1/2 g t²
100 = - vsinθ x 5 + .5 x 9.8 x 5²
5vsinθ = 222.5
vsinθ = 44.5
It covers 160 horizontally in 5 s
vcosθ x 5 = 160
v cosθ = 32
squaring and adding
v²sin²θ +v² cos²θ = 44.4² + 32²
v² = 1971.36 + 1024
v = 54.73 m /s
Answer:
LOL! couldnt be me either bestieeeee
Answer: Remain unchanged
Explanation:
The boat with water barrel overboard floats in swimming pool when weight of the water displaced by the boat is equal to the buoyant force acting on the boat.
When the water in the barrel is poured overboard, the level of the swimming pool level would remain unchanged as the weight of the boat with the water and barrel would remain unchanged ( as the density and volume of the whole system remains same) and hence, the weight of the water (of the swimming pool) displaced by the boat would remain same.
A boat loaded with a barrel of water floats in a swimming pool. When the water in the barrel is poured overboard, the swimming pool level will <u>remain unchanged. </u>
Explanation:
the average velocity of the car is 15 m/s example I have this on a test