The answer is C. an electron in an orbit has a fixed energy.
Power=Work/Time
The work done is the energy required to lift the box, fighting the force of gravity. So, Work=Potential energy of the box at 10 meters.
W=PE=mgh=(60)(9.8)(10)=5880J
Finally,
P=W/T=(5880)/(5)=1176Watt
So the answer is 1176 Watts
Use the eq. of Young modulus Y=(F/A)/(∆l/lo)
dimana ∆l is the elongation of wire, lo is its initial length.
So ∆l = (F/A)lo/Y.
∆l = (1000N/(6.5 × 10^-7 m^2))×(2.5m)/(2.0 × 10^-11 N/m^2)
Use calculator to finish it.
Explanation:
W = mg
m = 740g = 740/1000kg = 0.74kg
g = 15.6ms^-2
W = 0.74x15.6
W = 11.544 N
The mathematical relationship between force and extension for a spring is F = -kx , where F is the restoring force, k is the spring constant and x is the extension. If a box that weighs 40 N is hung from a spring of content 400 N/m, then the extension is equal to x = -F / k = -400 / 40 = -10 cm. The negative sign simply shows the extension and restoring force are in opposite directions. The answer is 10 cm.