The answer is Mullerian mimicry.
Mullerian mimicry is a kind of mimicry in which two or more poisonous animals generate identical presences as a shared protective tool. The theory behind this is that if a predator learns to avoid one of the poisonous species, it will also avoid the mimic species as well.
It is a natural process in which two or more often repugnant species, which may or may not be closely associated and share one or more common predators, have started to mimic each other's cautionary signals, for their communal benefit, as predators eventually learn to avoid all of them.
Answer:
1. sperm cell
2.testicles
3.egg
4.ovary
5.fertilization
6.fertilized egg = foetus
Explanation:
Answer:
The species that develop in aquatic environments, need to be able to have an adequate locomotion and according to the hydrostatic pressure in the water, which this pressure has the opposite direction to gravity in terrestrial life.
Explanation:
Vertebrates that have a skeleton are accustomed to gravitational forces, and this bone structure is what allows adequate locomotion to perform movements as a function of the force of earth's gravity, in water the force of gravity has no effect, since that the hydrostatic force predominates, which the direction is opposite to the gravitational forces.
Amorphous bodies, with few solid structures, not bony, make them better adapt to movements in water masses that are promoted by hydrostatic forces.
Answer:
a. Type O blood - No A or B antigens on RBCs-Anti-A antibodies in plasma-Anti-B antibodies in plasma
b. Type A blood - A antigen on RBCs- Anti-B antibodies in plasma
c. Type B blood - B antigen on RBCs- Anti-A antibodies in plasma
d. Type AB blood - A antigen on RBCs- B antigen on RBCs- Neither anti-A or anti-B in plasma
Explanation:
ABO blood grouping system represents multiple allelism which was discovered in humans by Karl Landsteiner. The blood group is determined by the presence or absence of A & B antigens and antibodies.
The 4 blood groups which exist in ABO system are O, A, B and AB. Also, allele A and B are co-dominant i.e. if they both will exist on the surface of an RBC then both will be equally expressed which implies that there will be no dominant or recessive allele.
Type O blood group has H antigen on the surface of RBC and has both the antibodies i.e. antibody A and B. The absence of antigens A and B makes it a universal donor.
Type A blood group has A antigen on RBC and has antibody B in the plasma.
Type B blood group has B antigen on RBC and has antibody A in the plasma.
Type AB blood group has both the antigens i.e. antigen A and B on RBC and does not have any antibody in the plasma which makes it a universal acceptor.
The amount of stuff inside the cell and outside the cell are equal