If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C.
Initial velocity = Vo= 25 m/s
Final velocity = V = x
Acceleration= a = 6 m/s^2
time= t = 4 seconds
Appy the equation:
V = Vo + at
Replacing:
V = 25 + 6(4) = 25 + 24 = 49 m/s
Answer:
<em>a) 3.56 x 10^22 N</em>
<em>b) 3.56 x 10^22 N</em>
<em></em>
Explanation:
Mass of the sun M = 2 x 10^30 kg
mass of the Earth m = 6 x 10^24 kg
Distance between the sun and the Earth R = 1.5 x 10^11 m
From Newton's law,
F = 
where F is the gravitational force between the sun and the Earth
G is the gravitational constant = 6.67 × 10^-11 m^3 kg^-1 s^-2
m is the mass of the Earth
M is the mass of the sun
R is the distance between the sun and the Earth.
Substituting values, we have
F =
= <em>3.56 x 10^22 N</em>
<em></em>
A) The force exerted by the sun on the Earth is equal to the force exerted by the Earth on the Sun also, and the force is equal to <em>3.56 x 10^22 N</em>
b) The force exerted by the Earth on the Sun = <em>3.56 x 10^22 N</em>
Answer:
Option 3
Explanation:
O Option C is NEGATIVELY CHARGED, meaning it has GAINED ELECTRONS resulting in a GREATER number of ELECTRONS than PROTONS.
Wave speed = (wavelength) x (frequency)
= (45 meters) x (9 per second)
= 405 meters per second .