Snell's law states that:
n1 Sin∅1 = n2 Sin ∅2
Where, medium 1 with (n1 = 1.33) is water and medium 2 with (n2 = 1) is the air, ∅1 = 90-50 = 40°
Therefore,
Sin ∅2 = n1/n2 *Sin ∅1 = 1.33/1 *Sin 40 = 0.4833=> ∅1 = Sin ^- (0.4833) = 28.9 °
The fisherman the sun at 61.1° (90-∅2) above the horizontal.
Answer:
In the grapher: The stops are marked with a flat line, velocity with a diagonal line, and acceleration with a curve.
Average speed= Total distance/Total time
Explanation:
Answer:
Workdone = 147Nm
Explanation:
Given the following data;
Mass = 5kg
Height = 3m
We know that acceleration due to gravity is 9.8m/s²
First of all, we would find the force applied;
Force = 5*9.8
Force = 49N
Now, to find the workdone;
Substituting into the equation, we have;
Workdone = 49 * 3
Workdone = 147Nm
Answer:
<h2>98 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
PE = 5 × 9.8 × 2
We have the final answer as
<h3>98 J</h3>
Hope this helps you
Answer:
a. F = 245 Newton.
b. Workdone = 392 Joules.
c. Power = 196 Watts
Explanation:
Given the following data;
Mass = 25kg
Distance = 1.6m
Time = 2secs
a. To find the force needed to lift the mass (in N );
Force = mass * acceleration
We know that acceleration due to gravity is equal to 9.8
F = 25*9.8
F = 245N
b. To find the work done by the student (in J);
Workdone = force * distance
Workdone = 245 * 1.6
Workdone = 392 Joules.
c. To find the power exerted by the student (in W);
Power = workdone/time
Power = 392/2
Power = 196 Watts.