True because the picture below proves this....
* from which red color is least deviated and violet most.
* Hopefully this helps:) Mark me the brainliest:) !!
<em>∞ 234483279c20∞</em>
Answer:
4.14 eV
Explanation:
f = 1.0 ×10^15 Hz
h= 6.63×10^-34 J s ( this is called PLANCK 'S CONSTANT)
ENEGY = E = ?
E = hf ( THIS IS FORMULA FOR ENERGY OF ONE QUANTA OR ONE PHOTON )
E= 6.63×10^-34×1.0 ×10^15
E = 6.63×10^-19 J
As 1eV = 1.6×10^-19 J so changing energy in eV from joules we will divide energy by 1.6×10^-19
hence E in eV = 6.63×10^-19/(1.6×10^-19)
E = 4.14 eV
Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).
Explanation:
Below is an attachment containing the solution.
Answer: 49.5 m
Explanation:
The speed of sound
is given by a relation between the distance
and the time
:
(1)
Where:
is the speed of sound in air (taking into account this value may vary according to the medium the sound wave travels)
since we are told th hunter was initially 412.5 meters from the cliff and then moves a distance
towards the cliff
Since the time given as data (2.2 s) is the time it takes to the sound wave to travel from the hunter's gun and then go back to the position where the hunter is after being reflected by the cliff
Having this information clarified, let's isolate
and then find
:
(2)
(3)
Finding
:
This is the distance at which the hunter is from the cliff.