A. corn syrup sorry if I replied late
Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
Answer:
m = 236212 [kg]
Explanation:
The potential energy can be determined by means of the product of mass by gravity by height. In this way, we have the following equation.

where:
P = potential energy = 3360000000 [J]
m = mass [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 1450 [m]
Now, we can clear the mass from the equation above:
![3360000000=m*9.81*1450\\m = 236212 [kg]](https://tex.z-dn.net/?f=3360000000%3Dm%2A9.81%2A1450%5C%5Cm%20%3D%20236212%20%5Bkg%5D)
Answer:
His average speed was 10.3199 m/s.
Explanation:
Answer:
-4*10⁴ units.
Explanation:
As the metal rod was initially neutral (which means that it has the same quantity of positive and negative charges), after being close to the charged sphere, as charge must be conserved, the total charge of the metal rod must still remain to be zero.
So, if due to the influence of the negative charge in the sphere, the half of the road closer to the sphere has a surplus charge of +4*10⁴ units, the charge on the half of the rod farther from the sphere must be the same in magnitude but of the opposite sign, i.e., -4*10⁴ units.