Answer:
Explanation:
Given that,
Mass of star M(star) = 1.99×10^30kg
Gravitational constant G
G = 6.67×10^−11 N⋅m²/kg²
Diameter d = 25km
d = 25,000m
R = d/2 = 25,000/2
R = 12,500m
Weight w = 690N
Then, the person mass which is constant can be determined using
W =mg
m = W/g
m = 690/9.81
m = 70.34kg
The acceleration due to gravity on the surface of the neutron star is can be determined using
g(star) = GM(star)/R²
g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²
g (star) = 8.49 × 10¹¹ m/s²
Then, the person weight on neutron star is
W = mg
Mass is constant, m = 70.34kg
W = 70.34 × 8.49 × 10¹¹
W = 5.98 × 10¹³ N
The weight of the person on neutron star is 5.98 × 10¹³ N
Answer:
decline
Explanation:
Based on the scenario being described within the question it can be said that these types of firms are in the decline stage of the product life cycle. This stage refers to when a product has already passed it's peak potential and sales begin to decline until production is ultimately halted and the product dies off. Which is exactly what is happening to the LP's since everyone has moved on to digital downloads.
Answer:
1.11 V
Explanation:
Given that the Einstein photoelectric equation states that;
KE = E - Wo
E = energy of incident photon
Wo= work function of the metal
E = hf = 6.64 x 10-34 * 6 x 1014
E = 39.84 * 10^-20 J or 3.98 * 10^-19 J
KE = 3.98 * 10^-19 J - 2.2 x 10-19J
KE = 1.78 * 10^-19J
We convert this value of KE to electron volts
KE = 1.78 * 10^-19J/1.6 x 10-19C
KE = 1.11 eV
Hence; 1.11 V will be just sufficient to stop electrons emitted by the sodium photo-plate reaching the collector plate.
Answer:
Option C
Explanation:
v= u + at
20 = 5 + a(5)
15= a(5)
a= 3 m/s²
Force = mass × acceleration
= 10 × 3
= 30 N