1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
13

The air in a room with volume 180 m3 contains 0.25% carbon dioxide initially. fresher air with only 0.05% carbon dioxide flows i

nto the room at a rate of 2 m3/min and the mixed air flows out at the same rate. find the percentage p of carbon dioxide in the room as a function of time t (in minutes).
Physics
1 answer:
Butoxors [25]3 years ago
8 0

Answer:

p(t)=\frac{1}{20}(1+2e^{-t/90})

Explanation:

Let p(t) be % of CO_2 at time t(time in minutes).

Amount of CO_2 in room=Volume of room \times p

Rate of change of CO_2 in room=Volume of room x \frac{dp}{dt}

=180\times \frac{dp}{dt}

Rate of inflow of CO_2=(\% CO_2 \ in\  Fresh\  Air \times \frac{1}{100})\times(Rate \ of  Inflow\ of \ air)

=(0.05\times \frac{1}{100})\times 2=\frac{1}{100}

Rate of CO_2 outflow

(\% CO_2 \ in\  Fresh\  Air \times \frac{1}{100})\times(Rate \ of  Outflow\ of \ air)\\=(p\times\frac{1}{100})\times2=\frac{p}{50}

Therefore rate of change of CO_2 is \frac{1}{100}-\frac{p}{50}

% rate of change is100\times \ Rate of \ Change=\frac{1}{10}-2p

Therefore we have:

180\frac{dp}{dt}=\frac{1}{10}-2p\\\frac{dp}{dt}=\frac{1-20p}{1800}\\\\\frac{dp}{20p-1}=-\frac{dt}{1800}

Integrate both:

\int\limits \frac{dp}{20p-1}=\int\limits-\frac{dt}{1800}

\frac{1}{20}In|20p-1|=-\frac{t}{1800}+In \ C

In|20p-1|=-\frac{t}{90}+InK

+20In \ C=+In \ K

Raise both sides to base e,

20p-1=e^{-\frac{t}{90}+In \ K}\\\\p=\frac{1}{20}(1+Ke^{-t/90})

Initially, there's only 0.25% of CO_2,

Now substitute p=0.25 and t=0

0.25=\frac{1}{20}(1+K)\\K=4

p=\frac{1}{20}(1+2e^{-t/90})

You might be interested in
Please help me with my quiz?
alina1380 [7]
The solutions would be :
1. C
2. B
3. A
4. C
5. D.
3 0
3 years ago
7. A bicycle accelerates at 2.0 m/s2. If the mass of the bicycle and rider together is
kkurt [141]

Answer:

170 N

Explanation:

Since Force F = ma were m = mass = 85 kg and a = acceleration = 2.0 m/s².

So the net force on the bicycle is

F = ma = 85 kg × 2.0 m/s² = 170 N

4 0
3 years ago
g A 5.60-kilogram hoop starts from rest at a height 1.80 m above the base of an inclined plane and rolls down under the influenc
swat32

Answer:

4.24m/s

Explanation:

Potential energy at the top= kinetic energy at the button

But kinetic energy= sum of linear and rotational kinetic energy of the hoop

PE= mgh

KE= 1/2 mv^2

RE= 1/2 I ω^2

Where

m= mass of the hoop

v= linear velocity

g= acceleration due to gravity

h= height

I= moment of inertia

ω= angular velocity of the hoop.

But

I = m r^2 for hoop and ω = v/r

giving

m g h = 1/2 m v^2 + 1/2 (m r^2) (v^2/r^2) = 1/2 m v^2 + 1/2 m v^2 = m v^2

and m's cancel

g h = v^2

Hence

v= √gh

v= √10×1.8

v= 4.24m/s

4 0
3 years ago
Read 2 more answers
Una rueda que tiene 15 cm de radio, realiza 64 vueltas en 16 seg. Calcula: Periodo Frecuencia Velocidad angular Velocidad lineal
liraira [26]

Answer:

i) El período de la rueda es de 0,25 segundos.

ii) La frecuencia de la rueda es 4 Hertz

iii) La velocidad angular es aproximadamente 25.133

iv) La velocidad lineal es de aproximadamente 3,77 m / s

Explanation:

El radio de la rueda, r = 15 cm = 0,15 m

El número de vueltas que hace la rueda = 64 vueltas

El tiempo que tarda el volante en dar 64 vueltas = 16 segundos

i) El período = El tiempo que tarda la rueda en dar 1 vuelta

∴ El período de la rueda, T = 16 segundos/(64 vueltas) = 0,25 segundos

El período de la rueda, T = 0,25 segundos

ii) La frecuencia = El número de vueltas por segundo

∴ La frecuencia de la rueda, f = 64 vueltas /(16 segundos) = 4 Hertz

1 vuelta = 2 · π radianes

La frecuencia de la rueda, f = 4 Hertz

iii) Velocidad angular = La medida del ángulo girado por segundo

∴ La velocidad angular, ω = 64 × 2 × π/16 segundos ≈ 8 · π rad/segundos ≈ 25.133 rad/seg

La velocidad angular, ω ≈ 25.133

iv) La velocidad lineal, v = r × ω

∴ v = 0,15 m × 8 · π rad / segundos ≈ 3,77 m/s

La velocidad lineal, v ≈ 3.77 m/s

7 0
3 years ago
The amount of steering wheel movement needed to turn will ____________ the faster you go.
Naddika [18.5K]

Answer:

The answer to your question is Decrease

4 0
3 years ago
Read 2 more answers
Other questions:
  • Infer why gases such as the oxygen used at hospitals are compressed. why must compressed gases be shielded from high temperature
    7·1 answer
  • 20. Threshold braking in the vehicle's braking system
    9·1 answer
  • Several motorboats with the same mass are used in an experiment. The forces of the different motors versus their accelerations a
    8·1 answer
  • Which term describes the number of thoughs that pass a point in a given amount of time
    10·1 answer
  • wich statement is true about the law of conservation of energy for an object released from a certain height above the ground​
    10·1 answer
  • Find the value of x.<br> 6x-1<br> 42<br> 10x+5<br> a<br> 78<br> x = [?]
    5·1 answer
  • A ray of laser light strikes a glass surface at an angle a=25.0° tot he normal and it is refracted to an angle b=18.5° to the no
    15·1 answer
  • Please help with this diagram as soon as possible.
    12·1 answer
  • The end that points southward is called
    11·1 answer
  • Is atom on the offficial repository of ubuntu ?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!