Answer:
<h2>Angular Displacement 6.28 radians</h2>
Explanation:
for circular motion we are expected to solve for Angular Displacement it is measured in radian
Measurement of Angular Displacement.
we can measure it using the following relation
∅= s/r
where
s = the distance travelled by the body, and
r = radius of the circle along which it is moving.
given that
circumference c, s= 400 m
r= ?
we have to solve for the radius
we know that circumference

400= 2*3.142*r
400= 6.282*r
divide both sides by 6.284 we have
400/6.284
r= 63.63 m
Angular displcament
∅= 400/63.63
∅= 6.28 radians
Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Melting point is when a mass goes from solid to liquid, whereas boiling point is when a mass goes from liquid to gas. I hope this helps.
Answer: "B" Changing Position
Great Question!
Explanation: <u><em>When a ball bounces to the ground it hits the ground with some energy. The amount of energy with which it hits the ground is kinetic energy. When it comes in the contact with the ground kinetic energy gets converted into potential energy. This potential energy again gets converted into kinetic energy and balls moves again from the ground and bounces multiple times. So, the ball ends up changing position</em></u>
<u><em /></u>
Blue light will bend more than the others because it has a slightly greater refractive index. This is because blue light has a shorter wavelength and more energy, meaning it has to slow down more than the others when it hits the water.