It would be D I believe! Depending on the angle of the mirror and distance positioned!
Answer:
1.08
Explanation:
This is the case of interference in thin films in which interference bands are formed due to constructive interference of two reflected light waves , one from upper layer and the other from lower layer . If t be the thickness and μ be the refractive index then
path difference created will be 2μ t.
For light coming from rarer to denser medium , a phase change of π occurs additionally after reflection from denser medium, here, two times, once from upper layer and then from the lower layer , so for constructive interference
path diff = nλ , for minimum t , n =1
path diff = λ
2μ t. = λ
μ = λ / 2t
= 626 / 2 x 290
= 1.08
Answer:
The value is
Explanation:
From the question we are told that
The wavelength is 
The velocity is 
The mass of electron is 
Generally the energy of the incident light is mathematically represented as

Here c is the speed of light with value
h is the Planck constant with value 
So

=> 
Generally the kinetic energy is mathematically represented as

=> 
=> 
Generally the ionization energy is mathematically represented as

=>
The mass of an object on Earth is the same as its mass on the Moon. The weight is different.
Weight = m * g
Weight ( Moon ) = 40 kg * 1.6 m/s² = 64 N
If the mass of an object on Earth is 40 kg, its mass on the Moon is 40 kg and its weight on the Moon is 64 N.
The ant would drag the sugar 500m
Good luck!