Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (1,127 kg) x (6 m/s² forward)
= (1,127 x 6) newtons forward
= 6,762 newtons forward
______________________________
Momentum = (mass) x (speed)
= (69 kg) x (6 m/s)
= 414 kg-m/s
Answer:
: It Decreases.
As the spacecraft gets farther and farther from Earth, the gravitational
forces between the spacecraft and the Earth decrease.
Explanation:
The correct answer is answer choice C. +1. Since electrons have negative charges, losing one electron will cause the atom to have a positive charge of 1. This charge comes from the protons, which, until one electron was lost, balanced out the negative charge of the electrons and caused the atom to be neutral.
Explanation:
Let us first calculate long does it take to go 12m at 30m/s( assumed speed)
12/30 = 0.4 seconds
horizontal distance the ball drop in that time
H= (0)(0.4)+1/2(-9.8)(0.4)2
H= -0.78m
negative sign shows that the height of the ball at the net from the top.
Height of the ball at the net and from the ground= H1-H=2.4-0.78=1.62m
As 1.62m>0.9m so the ball will clear the net.
H_1= V0y t’ + ½ g t’^2
-2.4= (0)t’ + ½ (-9.8) t’^2
t’= 0.69s
X’=V0x t’
X’=(30)(0.96)
X’= 20.7m