Answer:
Try a Cold Pack. Use a Heating Pad or Hot Compress. Ease Pressure on Your Scalp or Head. Dim the Lights. Try Not to Chew. Hydrate. Get Some Caffeine. Practice Relaxation.
Answer:
The maximum wavelength of light that could liberate electrons from the aluminum metal is 303.7 nm
Explanation:
Given;
wavelength of the UV light, λ = 248 nm = 248 x 10⁻⁹ m
maximum kinetic energy of the ejected electron, K.E = 0.92 eV
let the work function of the aluminum metal = Ф
Apply photoelectric equation:
E = K.E + Ф
Where;
Ф is the minimum energy needed to eject electron the aluminum metal
E is the energy of the incident light
The energy of the incident light is calculated as follows;

The work function of the aluminum metal is calculated as;
Ф = E - K.E
Ф = 8.02 x 10⁻¹⁹ - (0.92 x 1.602 x 10⁻¹⁹)
Ф = 8.02 x 10⁻¹⁹ J - 1.474 x 10⁻¹⁹ J
Ф = 6.546 x 10⁻¹⁹ J
The maximum wavelength of light that could liberate electrons from the aluminum metal is calculated as;
The correct answer is consequent.
Hope i helped :)
Answer:
a) Magnitude of maximum emf induced = 0.0714 V = 71.4 mv
b) Maximum current through the bulb = 0.00793 A = 7.93 mA
Explanation:
a) The induced emf from Faraday's law of electromagnetic induction is related to angular velocity through
E = NABw sin wt
The maximum emf occurs when (sin wt) = 1
Maximum Emf = NABw
N = 1
A = 4 cm² = 0.0004 m²
B = 6 T
w = (284/60) × 2π = 29.75 rad/s
E(max) = 1×0.0004×6×29.75 = 0.0714 V = 71.4 mV
Note that: since we're after only the magnitude of the induced emf, the minus sign that indicates that the induced emf is 8n the direction opposite to the change in magnetic flux, is ignored for this question.
b) Maximum current through the bulb
E(max) = I(max) × R
R = 9 ohms
E(max) = 0.0714 V
I(max) = ?
0.0714 = I(max) × 9
I(max) = (0.0714/9) = 0.00793 A = 7.93 mA
Hope this Helps!!
Answer:
Force = 607.95 Newton
Explanation:
Given the following data;
Area = 0.00600 m^2
Pressure = 1 atm to Pascal = 101325 Pa
To find the force;
Pressure = Force/area
Force = pressure * area
Substituting into the equation, we have;
Force = 101325 * 0.00600
Force = 607.95 Newton.
Therefore, the amount of force exerted by the air on the stamp is 607.95 Newton.