Answer:
Below
Explanation:
First, we need to convert the dimension from cm to m before plugging it into the equation:
32 / 100 = 0.32 m
10 / 100 = 0.1 m
You can use this equation to find the pressure exerted on the ground
Pressure = Force / Area
Plugging our values in.....
Pressure = 16 Newtons / (0.1)(0.32)
= 16 Newtons / 0.032
= 500 N/m^2
Hope this helps! Best of luck <3
Answer: B) Zinc will act as Anode
Explanation:
Standard reduction potential of zinc and nickel are:
Here Zinc undergoes oxidation by loss of electrons, thus act as anode as it has more negative reduction potential.
Nickel undergoes reduction by gain of electrons and thus act as cathode. as it has less negative reduction potential.
Where both
are standard reduction potentials.
As the emf is positive, the reaction is spontaneous and reaction will occur.
Thus Zinc will act as anode.
Question seems to be missing. Found it on google:
a) How long is the ski jumper airborne?
b) Where does the ski jumper land on the incline?
a) 4.15 s
We start by noticing that:
- The horizontal motion of the skier is a uniform motion, with constant velocity

and the distance covered along the horizontal direction in a time t is

- The vertical motion of the skier is a uniformly accelerated motion, with initial velocity
and constant acceleration
(where we take the downward direction as positive direction). Therefore, the vertical distance covered in a time t is

The time t at which the skier lands is the time at which the skier reaches the incline, whose slope is
below the horizontal
This happens when:

Substituting and solving for t, we find:

b) 143.6 m
Here we want to find the distance covered along the slope of the incline, so we need to find the horizontal and vertical components of the displacement first:


The distance covered along the slope is just the magnitude of the resultant displacement, so we can use Pythagorean's theorem:

Answer:
the SI unit of momentum is :- kg.ms-1
and we know that,
kinetic energy = 1/2 mv2
E=p2/2m
p=(2Em)1/2
so the derived units are (J.kg)1/2
Explanation: