1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
3 years ago
10

A long copper wire of radius 0.321 mm has a linear charge density of 0.100 μC/m. Find the electric field at a point 5.00 cm from

the center of the wire. (in Nm2/C, keep 3 significant figures)
Physics
1 answer:
krek1111 [17]3 years ago
4 0

Answer:

E=35921.96N/C

Explanation:

From the question we are told that:

Radius r=0.321mm

Charge Density \mu=0.100

Distance d= 5.00 cm

Generally the equation for electric field is mathematically given by

E=\frac{mu}{2\pi E_0r}

E=\frac{0.100*10^{-6}}{2*3.142*8.86*10^{-12}*5*10^{-2}}

E=35921.96N/C

You might be interested in
2 A box of mass 3 kg is initially at rest. Find the kinetic energy acquired by the box if
bekas [8.4K]

Answer: if 5N is applied for 5 seconds then it would move at a constant speed for one second then decrease in speed

5 0
3 years ago
For which optical devices does d¡ always have a negative value?
Dmitry [639]

Answer:

Explanation:

A i think

6 0
3 years ago
Read 2 more answers
I want ti know how to study​
arlik [135]

Answer:

Make sure everything is organized have a planner it can help

Get rid of all distractions

Listen to music if it helps you concentrate

Have your notes

Being willing to stay focus on what you are doing

Understand what you are doing

And most off all Be Happy and Remain Calm : )

3 0
4 years ago
Read 2 more answers
In case A below, a 1 kg solid sphere is released from rest at point S. It rolls without slipping down the ramp shown, and is lau
mestny [16]

Answer:

the block reaches higher than the sphere

\frac{y_{sphere}} {y_block} = 5/7

Explanation:

We are going to solve this interesting problem

A) in this case a sphere rolls on the ramp, let's find the speed of the center of mass at the exit of the ramp

Let's use the concept of conservation of energy

starting point. At the top of the ramp

         Em₀ = U = m g y₁

final point. At the exit of the ramp

         Em_f = K + U = ½ m v² + ½ I w² + m g y₂

notice that we include the translational and rotational energy, we assume that the height of the exit ramp is y₂

energy is conserved

          Em₀ = Em_f

         m g y₁ = ½ m v² + ½ I w² + m g y₂

angular and linear velocity are related

        v = w r

the moment of inertia of a sphere is

         I = \frac{2}{5} m r²

we substitute

         m g (y₁ - y₂) = ½ m v² + ½ (\frac{2}{5} m r²) (\frac{v}{r})²

         m g h = ½ m v² (1 + \frac{2}{5})

where h is the difference in height between the two sides of the ramp

h = y₂ -y₁

         mg h = \frac{7}{5} (\frac{1}{2} m v²)

         v = √5/7  √2gh

This is the exit velocity of the vertical movement of the sphere

         v_sphere = 0.845 √2gh

B) is the same case, but for a box without friction

   starting point

          Em₀ = U = mg y₁

   final point

          Em_f = K + U = ½ m v² + m g y₂

          Em₀ = Em_f

          mg y₁ = ½ m v² + m g y₂

          m g (y₁ -y₂) = ½ m v²

          v = √2gh

this is the speed of the box

          v_box = √2gh

to know which body reaches higher in the air we can use the kinematic relations

          v² = v₀² - 2 g y

at the highest point v = 0

           y = vo₀²/ 2g

for the sphere

           y_sphere = 5/7 2gh / 2g

           y_esfera = 5/7 h

for the block

           y_block = 2gh / 2g

            y_block = h

       

therefore the block reaches higher than the sphere

         \frac{y_{sphere}} {y_bolck} = 5/7

3 0
3 years ago
A car slows down uniformly from a speed of 30.0 m/s to rest in 7.20 s
Ede4ka [16]

When acceleration is constant, the average velocity is given by

\bar v=\dfrac{v+v_0}2

where v and v_0 are the final and initial velocities, respectively. By definition, we also have that the average velocity is given by

\bar v=\dfrac{\Delta x}{\Delta t}=\dfrac{x-x_0}{t-t_0}

where x,x_0 are the final/initial displacements, and t,t_0 are the final/initial times, respectively.

Take the car's starting position to be at t_0=0\,\mathrm s. Then

\dfrac{v+v_0}2=\dfrac{x-x_0}t\implies x=x_0+\dfrac12(v+v_0)t

So we have

x=0\,\mathrm m+\dfrac12\left(0\,\dfrac{\mathrm m}{\mathrm s}+30.0\,\dfrac{\mathrm m}{\mathrm s}\right)(7.20\,\mathrm s)=108\,\mathrm m

You also could have first found the acceleration using the equation

v=v_0+at

then solve for x via

x=x_0+v_0t+\dfrac12at^2

but that would have involved a bit more work, and it turns out we didn't need to know the precise value of a anyway.

7 0
3 years ago
Other questions:
  • An object with a mass of 20 kg has a net force of 80 N acting on it. What is the acceleration of the object?
    10·2 answers
  • How deep in the ocean is the wreckage of the titanic?
    6·2 answers
  • A solenoid 0.425 m long has 950 turns of wire. What is the magnetic field in the center of the solenoid when it carries a curren
    14·1 answer
  • A solution has a ph level of 8. Which best describes the solution?
    9·2 answers
  • Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at
    14·1 answer
  • A 5.67 gram coin is placed on a record that is rotating at 33.3 rpm. If the coefficient of the static friction is 0.100, how far
    7·1 answer
  • Point charges 1 mC and −2 mC are located at (3, 2, −1) and (−1, −1, 4), respectively. Calculate the electric force on a 10 nC ch
    7·2 answers
  • The sine of the incident angle is 0.217; the sine of the refracted angle is 0.173. Calculate the index of refraction.
    7·2 answers
  • Which of the following was used to provide the oldest measurement of Earth's age?
    15·1 answer
  • What conclusions can you make if a hockey goalie fails to block pucks shot in the upper right hand corner of the net
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!