The concept used here is the Le Chatelier's principle. When a disturbance is introduced to the system, it favors the direction of reaction that minimizes the disturbance to regain equilibrium.
In endothermic reactions, the forward reaction is favored when the temperature is low. Otherwise, the reverse reaction is favored. When you add the amounts of substances on the reactant side, more products would formed favoring the forward reaction. If you increase concentration on the product side, you form more reactants so it would favor the reverse reaction. Lastly, since 10 moles of gases are needed in the reactant side, it would be favored during high pressure reaction.
Total atoms is 9 ( 2 carbon atoms, 5 hydrogen atoms, 1 oxygen atom and 1 hydrogen atom = 9 atoms)
Element is 3 ( Carbon, Hydrogen and Oxygen)
Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)
Answer:
Explanation:
Part two of Dalton's theory had to be modified after mass spectrometry experiments demonstrated that atoms of the same element can have different masses because the number of neutrons can vary for different isotopes of the same element. ... Scientists have even developed the technology to see the world on an atomic level!
hoped i helped you :)
212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
Option A.
Explanation:
Similar to Avagadro's law, there is another law termed as dilution law. As the product of volume and normality of the reactant is equal to the product of volume and normality of the product from the Avagadro's law. In dilution law, it will be as product of volume and concentration of the solute of the reactant is equal to the product of volume and concentration of solution.
So, as per the given question C1 = 5.45 M of lead nitrate and V1 has to be found. While C2 is 1.41 M of lead nitrate and V2 is 820.7 ml.
Then,
So nearly 212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.