Characteristic properties can be used to describe and identify the substances, while non-characteristic properties, although can be used to describe the substances, cannot be used to identify them.
Temperature, mass, color, shape and volume are examples of non-characteristic properties.
Density, boiling point, melting point, chemical reactivity are examples of characteristic properties.
List of the properties observed by the scientist:
-----------------------------------------------------------------
Property Type of property
----------------------------------------------------------------
Volume: 5 ml non-characteristic
----------------------------------------------------------------
Color: blue non-characteristic
----------------------------------------------------------------
State: liquid characteristic
------------------------------------------------------------
density: 1.2 g/cm characteristic
------------------------------------------------------------
Reaction: reacts with CO2 characteristic
----------------------------------------------------------
D because Carbon and Oxygen form covalent compounds. I wasn't the greatest at chem., but I'm pretty sure this is correct :D let me know if I gave you the right answer.
The value of the Gibbs free energy shows us that the reaction is spontaneous.
<h3>What is the Gibbs free energy?</h3>
The Gibbs free energy is a quantity that helps us to be able to determine the spontaneity of a reaction.
In order to obtain the Gibbs free energy, we must obtain the Ecell as follows; 0.799V - (-0.402V) = 1.201 V
Now;
△G = -nFEcell
△G = -(2 * 96500 * 1.201)
△G = -232kJ/mol
Learn more about free energy:brainly.com/question/15319033?
#SPJ1
Answer:
2Mg(s) +O₂(g) → 2MgO(s)
Explanation:
Mg(s) +O₂(g) → MgO(s)
When a chemical equation is balanced, the number of atoms of each element is equal on both sides of the arrow. We usually balance O and H last.
In this case, the number of Mg atoms is equal on both sides. Thus, let's move on to balance the O atoms. On the left side, there are 2 O atoms, while there is only 1 O atom on the left side. Thus, write a '2' in front of MgO.
Mg(s) +O₂(g) → 2MgO(s)
Now, the number of Mg atoms is not equal. Write a '2' in front of Mg to balance it.
2Mg(s) +O₂(g) → 2MgO(s)
The equation is now balanced with 2 Mg atoms and 2 O atoms on each side.