The distance is 28 meters and the direction of displacement is East I think
Explanation:
The given data is as follows.
Electric field (E) = 
Charge (e) =
C
Formula to calculate the magnitude of force is as follows.
F = qE
= 
= 
Therefore, we can conclude that magnitude of the force on a calcium ion with charge +e is
.
Answer:
160N/m
Explanation:
According to Hooke's law which states that the extension of an elastic material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically,
F = ke where
F is the applied force
k is the spring constant
e is the extension
From the formula k = F/e
Since the body accelerates when the block is released, F = ma according to Newton's second law of motion.
The spring constant k = ma/e where
m is the mass of the block = 0.4kg
a is the acceleration = 8.0m/s²
e is the extension of the spring = 2.0cm = 0.02m
K = 0.4×8/0.02
K = 3.2/0.02
K = 160N/m
The spring constant of the spring is therefore 160N/m
The strength, and possibly the shape and direction, of the electric field
around a charged particle depends on the location of the particle.
If the process of measuring the field causes the particle to move, then
the measurement you get wouldn't mean anything.
Your measurements wouldn't show the ACTUAL field around the particle.
They would show what the field is like AFTER something comes along
and distorts it, and that's not what you're trying to measure.
It would be like carrying a flame thrower into a freezer when you go in
to measure the temperature in there.
Or if you had to measure how much light is leaking into a dark room,
and you carried a flashlight with you to see your way around in there.