When the object is at the focal point the angular magnification is 2.94.
Angular magnification:
The ratio of the angle subtended at the eye by the image formed by an optical instrument to that subtended at the eye by the object when not viewed through the instrument.
Here we have to find the angular magnification when the object is at the focal point.
Focal length = 6.00 cm
Formula to calculate angular magnification:
Angular magnification = 25/f
= 25/ 8.5
= 2.94
Therefore the angular magnification of this thin lens is 2.94
To know more about angular magnification refer:: brainly.com/question/28325488
#SPJ4
Answer:
gravitational waves are ripples in spece-time caused primarily when objects are accelerated and the energy for the acceleration is transpoted as gravitational radiation.
they are difficult to detect because they require very sensitive technology or you will have to wait unitl black holes collide.
Answer:
5.31143691523 m/s²
Explanation:
m = Mass = 280 g
x = Displacement of spring = 21.7 cm
Time period

Angular velocity is given by


From Hooke's law

The acceleration due to gravity on the planet is 5.31143691523 m/s²
Yes, I have been able to satisfy my curiosity.
The direction of the electric field would be south.
qE/m = 115
<span> E = 115*m/q </span>
<span> = 115 * 9.1 * 10^(-31) / 1.67*10^(-19) </span>
<span> = 762.87 * 10^(-12) </span>
<span> = 6.27 x 10^-10 N/C
</span>
Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
what language is that
Explanation:
i don't understand the languge u used please can you change it