Energy E of EM radiation is given by the equation E=hf, where h is Planck's constant and f is frequency. It means energy E and frequency f are proportional so as we increase the frequency, energy also increases. Also, the relationship between the wavelength and frequency is c=λ*f where λ is the wavelength and f is frequency and c is the speed of light. This tells us the wavelength and frequency are inversely proportional. So as we increase the frequency the wavelength is getting smaller. So as we go from left to right the frequency increases, energy also increases and the wavelength is decreasing. Or, on the left side we should have low frequency, low radiant energy, and long wavelength. On the right side we should have high frequency, high radiant energy and low wavelength. That is the third graph.
Answer:
The current through a branch is also called the branch current. The current supplied by the battery in a parallel circuit splits at one or more branch points. All of the current entering a branch point must exit again. This rule is known as Kirchhoff's current law
Explanation:
Answer:
People often overestimate the clarity of their intentions in their electronic communications because they underestimate the importance of tones of voice in communication.
Explanation:
Many factors intervene in communication together. We use words, we use non-verbal language through our gestures and attitudes, and we also use a certain tone of voice. If we focus on this last aspect, the tonality in the voice is decisive in many ways, which cannot be appreciated through electronic communications. With this we communicate emotions, attitudes and a degree of personal involvement. At the same time, the image we project on others largely depends on the tone of voice we have.
Mars is the focus of much scientific study about possible human colonization. Its surface conditions and the presence of water on Mars make it arguably the most hospitable of the planets in the Solar System, other than Earth. Mars requires less energy per unit mass (delta-v) to reach from Earth than any planet except Venus.
Permanent human habitation on a planetary body other than the Earth is one of science fiction's most prevalent themes. As technology has advanced, and concerns about the future of humanity on Earth have increased, the argument that space colonization is an achievable and worthwhile goal has gained momentum. Other reasons for colonizing space include economic interests, long-term scientific research best carried out by humans as opposed to robotic probes, and sheer curiosity.
One of Elon Musk's stated goals through his company SpaceX is to make such colonization possible by providing transport, and to "help humanity establish a permanent, self-sustaining colony on Mars within the next 50 to 100 years".
Many organizations support the colonization of Mars. They have also given different reasons and ways humans can live on Mars. One of the oldest organizations is the Mars Society. They promote a NASA program that supports human colonies on Mars. The Mars Society have set up Mars analog research stations in Canada and the United States. All other organizations include MarsDrive, who wants to help fund settlements on Mars, and Mars to Stay. Mars to Stay advocates settlements on Mars. In June 2012, Mars One released a statement that they believe could help start a colony on Mars by 2023.
Answer:
a) The uniform velocity travelled by the car is 10 meters per second.
(Point b has been erased by the user)
c) The distance travelled by the car with uniform velocity is 100 meters.
Explanation:
a) Calculate the uniform velocity travelled by the car:
The uniform velocity is the final velocity (
), in meters per second, of the the uniform accelerated stage:
(1)
Where:
- Initial velocity, in meters per second.
- Acceleration, in meters per square second.
- Time, in seconds.
If we know that
,
and
, then the uniform velocity is:


The uniform velocity travelled by the car is 10 meters per second.
(Point b has been erased by the user)
c) The distance travelled by the car (
), in meters, with uniform velocity is calculated by the following kinematic expression:
(2)
If we know that
and
, then the distance travelled is:


The distance travelled by the car with uniform velocity is 100 meters.