Impact crater would be the answer but tell me if I'm roght
Answer:
vT = v0/3
Explanation:
The gravitational force on the satellite with speed v0 at distance R is F = GMm/R². This is also equal to the centripetal force on the satellite F' = m(v0)²/R
Since F = F0 = F'
GMm/R² = m(v0)²/R
GM = (v0)²R (1)
Also, he gravitational force on the satellite with speed vT at distance 3R is F1 = GMm/(3R)² = GMm/27R². This is also equal to the centripetal force on the satellite at 3R is F" = m(vT)²/3R
Since F1 = F'
GMm/27R² = m(vT)²/3R
GM = 27(vT)²R/3
GM = 9(vT)²R (2)
Equating (1) and (2),
(v0)²R = 9(vT)²R
dividing through by R, we have
9(vT)² = (v0)²
dividing through by 9, we have
(vT)² = (v0)²/9
taking square-root of both sides,
vT = v0/3
Answer:
The answer is 34.119m
Explanation:
You need to pay attention to the word "uniformly". It means there is no acceleration thus the physics of this problem respond to the uniform rectilinear motion equations:
- Xf = Xo + vt
- v = constant
- a = 0
where:
- v = velocity (speed)
- t = time
- a = acceleration
Xf = 0 + (15.3)(2.23)
Xf = 34.119m
The fish is actually farther from you then you think
Explanation:
Let f is the frequency of an oscillation and T is the period of the oscillation. There exists an inverse relationship between the frequency and the time period of the oscillation. Mathematically, it is given by :

Also, 
So,

The time taken to complete one oscillation is called the period of the oscillation and the number of oscillation is called the frequency if an oscillation.