The question is what numbers satisfy A ∩ C.
The symbol ∩ means intersection, .i.e. you need to find the numbers that belong to both sets A and C. Those numbers might belong to the set C or not, because that is not a restriction.
Then lets find the numbers that belong to both sets, A and C.
Set A: perfect squares from A to 100:
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
5^2 = 25
6^2 = 36
7^2 = 49
8^2 = 64
9^2 = 81
10^2 = 100
=> A = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
Set C: perfect fourths
1^4 = 1
2^4 = 16
3^4 = 81
C = {1, 16, 81?
As you see, all the perfect fourths are perfect squares, so the intersection of A and C is completed included in A. this is:
A ∩ C = C or A ∩ C = 1, 16, 81
On the other hand, the perfect cubes are:
1^3 = 1
2^3 = 8
3^3 = 27
4^3 = 81
B = {1, 8, 27, 81}
That means that the numbers 1 and 81 belong to the three sets, A, B, and C.
In the drawing you must place the number 16 inside the region that represents the intersection of A and C only, and the numbers 1 and 81 inside the intersection of the three sets A, B and C.
Answer:
The bottom graph is the graph of that equation
Let JD = Distance drilled in joist
<span>JD = 3 - 1 1/3 </span>
<span>JD = 9/3 - 4/3 </span>
<span>========================== </span>
<span>JD = 5/3 or 1 2/3 in ◄ Ans
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Step-by-step explanation:
(a) dP/dt = kP (1 − P/L)
L is the carrying capacity (20 billion = 20,000 million).
Since P₀ is small compared to L, we can approximate the initial rate as:
(dP/dt)₀ ≈ kP₀
Using the maximum birth rate and death rate, the initial growth rate is 40 mil/year − 20 mil/year = 20 mil/year.
20 = k (6,100)
k = 1/305
dP/dt = 1/305 P (1 − (P/20,000))
(b) P(t) = 20,000 / (1 + Ce^(-t/305))
6,100 = 20,000 / (1 + C)
C = 2.279
P(t) = 20,000 / (1 + 2.279e^(-t/305))
P(10) = 20,000 / (1 + 2.279e^(-10/305))
P(10) = 6240 million
P(10) = 6.24 billion
This is less than the actual population of 6.9 billion.
(c) P(100) = 20,000 / (1 + 2.279e^(-100/305))
P(100) = 7570 million = 7.57 billion
P(600) = 20,000 / (1 + 2.279e^(-600/305))
P(600) = 15170 million = 15.17 billion
Answer:
what graph
Step-by-step explanation: