Answer:
19.1 deg
Explanation:
v = speed of the proton = 8 x 10⁶ m/s
B = magnitude of the magnetic field = 1.72 T
q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C
F = magnitude of magnetic force on the proton = 7.20 x 10⁻¹³ N
θ = Angle between proton's velocity and magnetic field
magnitude of magnetic force on the proton is given as
F = q v B Sinθ
7.20 x 10⁻¹³ = (1.6 x 10⁻¹⁹) (8 x 10⁶) (1.72) Sinθ
Sinθ = 0.327
θ = 19.1 deg
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules
Explanation:
It is given that,
Frequency of monochromatic light, 
Separation between slits, 
(a) The condition for maxima is given by :

For third maxima,



(b) For second dark fringe, n = 2





Hence, this is the required solution.
Answer:
B. Both electric fields and forces ...
Explanation: